Art, Science, and Engineering Come Together: The AlloSphere (Joshua Zintel, 2009)

JoAnn Kuchera-Morin Invents a New Way to Process Data


“The AlloSphere. It’s a three-story metal sphere in an echo-free chamber. Think of the AlloSphere as a large, dynamically varying digital microscope that’s connected to a supercomputer. 20 researchers can stand on a bridge suspended inside of the sphere, and be completely immersed in their data.” JoAnn Kuchera-Morin of the University of California at Santa Barbara.

By combining the talents of artists, composers, programmers and engineers, Professor Kuchera-Morin has built an amazing new device for visualizing scientific data. Her team converts scientific data such as Atomic Force Microscope and FMRI information that is linked to visual representations. While the dynamically varying super-computer translates this data into visual and audio representations, from inside the AlloSphere teams of researchers can immerse themselves in the simulation and discover new patterns of data.

From the macroscopic world down to the spin of a single atom, the simulations come close to quantifying beauty as one sees and listens to data being reported as varying tones and shapes that correspond to physical changes within the system. Like a realtime virtual reality chamber, one can interact with the scene and zoom in and out of different levels and study the patterns of change.

Metaphor and Simulation meet Quantified Science

Often the ability to make unexpected connections between apparently diverse sets of information is the hallmark of creativity. Links between art and science are sometimes viewed as superficial, but in the AlloSphere we begin to see their intimate unity. By connecting actual data variances with corresponding tones, one begins to use more faculties of analysis than the linear view of semiotic presentation, allowing novel associations to emerge.

The ability to think in metaphors keeps creeping up as the key-factor in studies of the creative process, and in the AlloSphere we may see why. Patterns — or the presentation of information — are not limited to the medium in which they arise; one may translate one form of expression into the another, as in the case of digital patterns which become translated into visual or audio streams, or Morse Code which is decoded as text. Even our brain itself works on this principle, translating rhythms of bone fluctuation in our ears into electronic pulses to be decoded by the brain, or likewise the eyes transmitting signals from the retina. By linking data from various systems to corresponding tones and shapes, one may perceive patterns that were not apparent in the mathematical or linear form of algorithms.

Case in point: Dr. Kuchera-Morin’s colleagues in the Center for Quantum Computation and Spintronics use lasers to measure an electron’s decoherence. Her team makes a mathematical model, and the composers attach tones to the data, so that one actually hears a representation of quantum information flow. Because the information is stimulating new brain areas (musical, visual) aside from the mathematical , they are learning new relationships which weren’t apparent before the translation.

From a subjective point of view, the audio and visual representations are stunning, beautiful, and elegant. I am simply amazed — but not surprised — to witness biological and quantum data being translated into exquisite music and visual representation.

She calls upon the scientific and artistic communities to visit the AlloSphere at UCSB, and discuss new ways to explore complex data as it unfolds in time and space. The AlloSphere is a unique device bringing together the best of art, science, math and engineering. I, for one, can’t wait to get the personal tour!

JoAnn Kuchera-Morin Demos the AlloSphere


Interdisciplinary Education: Capstone Goal

Quote from Wikipedia:


General systems research and systems inquiry

Many early systems theorists aimed at finding a general systems theory that could explain all systems in all fields of science. The term goes back to Bertalanffy’s book titled “General System theory: Foundations, Development, Applications” from 1968.[9] According to Von Bertalanffy, he developed the “allgemeine Systemlehre” (general systems teachings) first via lectures beginning in 1937 and then via publications beginning in 1946.[25]

Von Bertalanffy’s objective was to bring together under one heading the organismic science that he had observed in his work as a biologist. His desire was to use the word system for those principles that are common to systems in general. In GST, he writes:

…there exist models, principles, and laws that apply to generalized systems or their subclasses, irrespective of their particular kind, the nature of their component elements, and the relationships or “forces” between them. It seems legitimate to ask for a theory, not of systems of a more or less special kind, but of universal principles applying to systems in general.


Ervin Laszlo[27] in the preface of von Bertalanffy’s book Perspectives on General System Theory:[28]

Thus when von Bertalanffy spoke of Allgemeine Systemtheorie it was consistent with his view that he was proposing a new perspective, a new way of doing science. It was not directly consistent with an interpretation often put on “general system theory”, to wit, that it is a (scientific) “theory of general systems.” To criticize it as such is to shoot at straw men. Von Bertalanffy opened up something much broader and of much greater significance than a single theory (which, as we now know, can always be falsified and has usually an ephemeral existence): he created a new paradigm for the development of theories.

Ludwig von Bertalanffy outlines systems inquiry into three major domains: Philosophy, Science, and Technology. In his work with the Primer Group, Béla H. Bánáthy generalized the domains into four integratable domains of systemic inquiry:

Domain Description
Philosophy the ontology, epistemology, and axiology of systems;
Theory a set of interrelated concepts and principles applying to all systems
Methodology the set of models, strategies, methods, and tools that instrumentalize systems theory and philosophy
Application the application and interaction of the domains

These operate in a recursive relationship, he explained. Integrating Philosophy and Theory as Knowledge, and Method and Application as action, Systems Inquiry then is knowledgeable action.[29]


Academic Aspirations of Joshua Zintel